Lý thuyết chung: $|A|=\left\{\begin{matrix} A \: khi \, A \geq 0\\ -A \: khi \: A<0\end{matrix}\right.$.
Phương pháp: Gọi (C) là đồ thị của hàm số $y=f(x)$.
Hàm số $|f(x)|=\left\{\begin{matrix} f(x) \: khi \, f(x) \geq 0\\ -f(x) \: khi \: f(x)<0\end{matrix}\right.$.
Tức là
Ví dụ: Vẽ đồ thị hàm số $y=|x^{3}+3x^{2}-2|$ biết đồ thị hàm số $y=x^{3}+3x^{2}-2$ là
Giải: Ta có $y=|x^{3}+3x^{2}-2|=\left\{\begin{matrix} x^{3}+3x^{2}-2 \: khi \: x \in [-1-\sqrt{3},-1] \cup [-1+\sqrt{3}, +\infty) \\ -(x^{3}+3x^{2}-2) \: khi \: x \in (-\infty, -1-\sqrt{3}) \cup (-1, -1+\sqrt{3})\end{matrix}\right.$.
Ta thấy đồ thị hàm số $y=-(x^{3}+3x^{2}-2)$ (màu đỏ) là đồ thị đối xứng của đồ thị $y=x^{3}+3x^{2}-2$ (màu xanh) qua trục Ox.
Đồ thị $y=x^{3}+3x^{2}-2$ ta chỉ lấy trong khoảng $ x \in [-1-\sqrt{3},-1] \cup [-1+\sqrt{3}, +\infty)$ và đồ thị $y=-(x^{3}+3x^{2}-2)$ ta lấy trong khoảng $x \in (-\infty, -1-\sqrt{3}) \cup (-1, -1+\sqrt{3})$. Ta có đồ thị hàm số $y=|x^{3}+3x^{2}-2|$ như sauHay
Ta có đồ thị hàm số $y=|x^{3}+3x^{2}-2|$ là $C_{1} \cup C_{2}$.
Phương pháp: Gọi (C) là đồ thị hàm số $y=f(x)$.
Ta có $y=f(|x|)=\left\{\begin{matrix} f(x) \: khi \: x \geq 0\\ f(-x) \: khi \: x <0 \end{matrix} \right. $
Tức là
Ví dụ: Vẽ đồ thị hàm số $y=|x|^{3}-3x^{2}+1$ biết đồ thị hàm số $y=x^{3}-3x^{2}+1$ là
Giải:
$y=|x|^{3}-3x^{2}+1=\left\{\begin{matrix} x^{3}-3x^{2}+1 \: khi \: x \geq 0\\ -x^{3}-3x^{2}+1 \: khi \: x <0 \end{matrix}\right.$
Ta thấy đồ thị hàm số $y=-x^{3}-3x^{2}+1$ (màu đen) là đồ thị đối xứng của đồ thị hàm số $y=x^{3}-3x^{2}+1$ (màu nâu) qua trục Oy.
Đồ thị hàm số $y=x^{3}-3x^{2}+1$ lấy trong khoảng $x \geq 0$ và đồ thị hàm số $y=-x^{3}-3x^{2}+1$ lấy trong khoảng x<0. Vậy đồ thị hàm số $y=|x|^{3}-3x^{2}+1$ như sau
Hay
Ta có $y=|f(x)|.g(x)=\left\{\begin{matrix} f(x).g(x) \: khi \: f(x) \geq 0\\ -f(x).g(x) \: khi \: f(x)<0\end{matrix}\right.$.
Phương pháp:
Ví dụ: Vẽ đồ thị hàm số $y=|x-1|.(x^{2}-x-2)$.
Giải: $y=|x-1|(x^{2}-x-2)=\left\{\begin{matrix} x^{3}-2x^{2}-x+2 \: khi \: x \geq 1 \\ -(x^{3}-2x^{2}-x+2) \: khi \: x <1 \end{matrix}\right.$
Đồ thị hàm số $y=x^{3}-2x^{2}-x+2$
Đồ thị hàm số $y=x^{3}-2x^{2}-x+2$ là đối xứng của đồ thị hàm số $y=-(x^{3}-2x^{2}-x+2$.
Đồ thị hàm số $y=x^{3}-2x^{2}-x+2$ lấy trong khoảng $x \geq 1$ và đồ thị hàm số $y=-(x^{3}-2x^{2}-x+2$ lấy trong khoảng $x<1$ ta có đồ thị hàm số $y=|x-2|(x^{2}-x-2)$. như sau
Câu 1(Đề minh họa của Bộ lần 3): Hàm số $y=(x-2)(x^{2}-1)$ có đồ thị như hình bên. Hình nào dưới đây là đồ thị của hàm số $y=|x-2|(x^{2}-1)$?
Câu 2: Đồ thị hình bên là của hàm số nào?
A. $y=|x^{3}-2x^{2}+3x|$.
B. $y=|x|^{3}-2x^{2}+3|x|$.
C. $y=|\frac{1}{3}x^{3}-2x^{2}+3x|$.
D. $y=\frac{1}{3}|x|^{3}-2x^{2}+3|x|$.
Câu 3: Cho hàm số $y=f(x)$ có đồ thị như hình vẽ ở bên. Tìm tập hợp tất cả các giá trị của m để đồ thị hàm số $y=f(|x|+m)$ có 5 điểm cực trị
A. m>1.
B. m>-1.
C. m <-1.
D. m<1
Ý kiến bạn đọc
Những tin mới hơn
Những tin cũ hơn
Trang chia sẽ kiến thức là một nơi mà mọi người có thể tìm kiếm và chia sẽ kiến thức về mọi lĩnh vực. Từ khoa học đến nghệ thuật, từ kinh tế đến xã hội, trang chia sẽ kiến thức là một nguồn tài nguyên quý giá cho mọi người. Trong xã hội ngày nay, việc học hỏi và chia sẽ kiến thức là rất quan trọng....