Phương pháp chung:
Dạng 1: Hình chóp đều.
Gọi h là chiều cao của hình chóp, a là độ dài cạnh bên của hình chóp. Ta có $$R=\frac{a^{2}}{2h}.$$ |
Ví dụ 1: Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a và cạnh bên bằng $\frac{a \sqrt{21}}{6}$. Tính bán kính mặt cầu ngoại tiếp khối chóp đã cho.
Giải: Gọi O là tâm của tam giác ABC, suy ra $SO=\frac{a \sqrt{3}}{3}$.
Tam giác SOA vuông tại O nên $SO=\sqrt{SA^{2}-AO^{2}}=\frac{a}{2}$.
Áp dụng công thức $R=\frac{7a}{12}$.
Bài tập áp dụng
Câu 1: Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, cạnh bên bằng 3a. Tính bán kính mặt cầu ngoại tiếp khối chóp đã cho.
Dạng 2: Hình chóp có cạnh bên vuông góc với mặt đáy.
Gọi h, r là chiều cao và bán kính đường tròn ngoại tiếp đa giác đáy. Ta có $$R=\sqrt{(\frac{h}{2})^{2}+r^{2}}.$$ |
Ví dụ 2: Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Cạnh bên $SA=a$ và vuông góc với đáy (ABC). Tính bán kính mặt cầu ngoại tiếp khối chóp S.ABC.
Giải: Bán kính đường tròn ngoại tiếp tam giác ABC:
$r=AG=\frac{2}{3} AM= \frac{a \sqrt{3}}{3}$, h=SA=a.
Áp dụng công thức, ta có $R=\sqrt{(\frac{a}{2})^{2}+(\frac{a \sqrt{3}}{3})^{2}}=\frac{a \sqrt{21} }{6} $.
Bài tập áp dụng
Câu 2: Cho tứ diện OABC có các cạnh OA, OB, OC đôi một vuông góc với nhau và OA=a, OB=2a, OC=2a. Tính bán kính mặt cầu ngoại tiếp tứ diện OABC.
Câu 3: Cho hình chóp S.ABC có đáy ABC là tam giác cân tại A, AB=a và $\widehat{BAC}=120^{0}$. Cạnh bên SA=2a và vuông góc với đáy (ABC). Tính bán kính mặt cầu ngoại tiếp hình chóp đã cho.
Câu 4: Cho hình chóp SABCD có đáy ABCD là hình vuông. SA vuông góc với mặt phẳng (ABCD) và SC=2a. Tính bán kính mặt cầu ngoại tiếp hình chóp trên.
Dạng 3: Hình chóp có mặt bên vuông góc với đáy
Gọi $R_{b}, R_{d}$ là bán kính đường tròn ngoại tiếp mặt bên và mặt đáy, GT là độ dài giao tuyến mặt bên đó và đáy. Ta có $$ R=\sqrt{R_{b}^{2}+R_{d}^{2}-\frac{GT^{2}}{4}}.$$ |
Ví dụ 3: Cho hình chóp SABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Tính bán kính mặt cầu ngoại tiếp hình chóp SABCD.
Giải: Giao tuyến của (SAB) với (ABCD) là AB.
Bán kính đường tròn ngoại tiếp đáy $R_{d}=AO=\frac{a \sqrt{2}}{2}$.
Bán kính đường tròn ngoại tiếp mặt bên $R=SG=\frac{a \sqrt{3}}{3}$.
Áp dụng công thức $R=\sqrt{R_{b}^{2}+R_{d}^{2}-\frac{GT^{2}}{4}}=\frac{a \sqrt{21}}{6}$.
Bài tập áp dụng:
Câu 5: Cho hình chóp SABC có đáy ABC là tam giác vuông cân tại B, AB=$a \sqrt{2}$. Cạnh bên $SA=a \sqrt{2}$, hình chiếu vuông góc với mặt phẳng đáy trùng với trung điểm của cạnh huyền AC. Tính bán kính mặt cầu ngoại tiếp khối chóp.
Câu 6: Cho hình chóp SABC có đáy ABC là tam giác vuông tại C. Mặt phẳng (SAB) vuông góc với đáy, SA=SB=2a, $\widehat{ASB}=120^{0}$. Tính bán kính mặt cầu ngoại tiếp hình chóp đó.
Câu 1: Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, cạnh bên bằng 3a. Tính bán kính mặt cầu ngoại tiếp khối chóp đã cho.
Câu 2: Cho tứ diện OABC có các cạnh OA, OB, OC đôi một vuông góc với nhau và OA=a, OB=2a, OC=2a. Tính bán kính mặt cầu ngoại tiếp tứ diện OABC.
Câu 3: Cho hình chóp S.ABC có đáy ABC là tam giác cân tại A, AB=a và $\widehat{BAC}=120^{0}$. Cạnh bên SA=2a và vuông góc với đáy (ABC). Tính bán kính mặt cầu ngoại tiếp hình chóp đã cho.
Câu 4: Cho hình chóp SABCD có đáy ABCD là hình vuông. SA vuông góc với mặt phẳng (ABCD) và SC=2a. Tính bán kính mặt cầu ngoại tiếp hình chóp trên.
Câu 5: Cho hình chóp SABC có đáy ABC là tam giác vuông cân tại B, AB=$a \sqrt{2}$. Cạnh bên $SA=a \sqrt{2}$, hình chiếu vuông góc với mặt phẳng đáy trùng với trung điểm của cạnh huyền AC. Tính bán kính mặt cầu ngoại tiếp khối chóp.
Câu 6: Cho hình chóp SABC có đáy ABC là tam giác vuông tại C. Mặt phẳng (SAB) vuông góc với đáy, SA=SB=a, $\widehat{ASB}=120^{0}$. Tính bán kính mặt cầu ngoại tiếp hình chóp đó.
Ý kiến bạn đọc
Những tin mới hơn
Những tin cũ hơn
Trang chia sẽ kiến thức là một nơi mà mọi người có thể tìm kiếm và chia sẽ kiến thức về mọi lĩnh vực. Từ khoa học đến nghệ thuật, từ kinh tế đến xã hội, trang chia sẽ kiến thức là một nguồn tài nguyên quý giá cho mọi người. Trong xã hội ngày nay, việc học hỏi và chia sẽ kiến thức là rất quan trọng....