Chuyên đề sử dụng máy tính để giải một số bài tập mũ- logarit

Thứ ba - 16/01/2024 02:46

Chuyên đề sử dụng máy tính để giải một số bài tập mũ- logarit

Mục lục
Đây là một số phương pháp giải bài tập mũ- logarit sử dụng máy tính Casio.

Dạng 1: Rút gọn biểu thức mũ- logarit dạng số.

Phương pháp:

Bước 1: Nhập biểu thức vào máy tính rồi gán cho giá trị A.

Bước 2: Lấy giá trị A trừ cho các đáp án A, B, C, D nếu kết quả bằng 0 thì là đáp án đúng.

Ví dụ 1: Giá trị biểu thức $A=\frac{(2^{2\sqrt{3}}-1)(2^{\sqrt{3}}+2^{2\sqrt{3}}+2^{3\sqrt{3}})}{2^{4\sqrt{3}}-2^{\sqrt{3}}}$ là:

A. 1.

B. $2^{\sqrt{3}}+1$.

C. $2^{\sqrt{3}}-1$.

D. -1.

Giải: Đáp án B.

Nhập vào máy tính hàm số $\frac{(2^{2\sqrt{3}}-1)(2^{\sqrt{3}}+2^{2\sqrt{3}}+2^{3\sqrt{3}})}{2^{4\sqrt{3}}-2^{\sqrt{3}}}$ và ấn =

Đáp án là một số xấu. Như vậy loại ngay đáp án A và D.

Kiểm tra kết quả câu B. Bấm $A-2^{\sqrt{3}}-1$

Dạng 2: Rút gọn biểu thức mũ- logarit dạng chữ

Phương pháp:

Bước 1: Nhập biểu thức vào máy tính.

Bước 2: Gán giá trị cho từng biến dựa vào tập xác định của nó.

Bước 3: Thử lại các giá trị gán đó với đáp án, nếu kết quả trùng khớp thì là đáp án đúng.

Ví dụ 2: Rút gọn biểu thức $A=\frac{(\sqrt[4]{a^{3}b^{2}})^{4}}{\sqrt[3]{\sqrt{a^{12}b^{6}}}}$ với a, b>0.

A. $a^{2}b$.

B. $ab^{2}$.

C. $a^{2}b^{2}$.

D. $ab$.

Giải: Đáp án D

Cách 1: Giải theo hình thức tự luận.

$A=\frac{(\sqrt[4]{a^{3}b^{2}})^{4}}{\sqrt[3]{\sqrt{a^{12}b^{6}}}}=\frac{a^{3}b^{2}}{\sqrt[6]{a^{12}b^{6}}}=\frac{a^{3}b^{2}}{a^{2}b}=ab$.

Cách 2: Sử dụng máy tính

Với a=2, b=3 ta có ở đáp án A, B, C, D lần lượt là 12, 18, 36, 6.

Nhập $\frac{(\sqrt[4]{a^{3}b^{2}})^{4}}{\sqrt[3]{\sqrt{a^{12}b^{6}}}}$ bấm CALC X?2, Y?3 ta được 

Ví dụ 3: Rút gọn biểu thức $(\frac{1}{a})^{\log_{\sqrt{a}}2-\log_{a^{2}}9}$.

A. $\frac{2}{3}$.

B. $\frac{-4}{3}$.

C. $\frac{4}{3}$.

D. $ \frac{3}{4}$.

Giải: Đáp án D.

Cách 1: Giải theo hình thức tự luận

Ta có $(\frac{1}{a})^{\log_{\sqrt{a}}2-\log_{a^{2}}9}=a^{-\log_{\sqrt{a}}2+\log_{a^{2}}9}=\frac{a^{\log_{a^{2}}3^{2}}}{2a^{\log_{\sqrt{a}}2}}=\frac{a^{\log_{a}3}}{2a^{\log_{a}2}}=\frac{3}{4}$.

Cách 2: Sử dụng máy tính.

Nhập vào máy tính $(\frac{1}{X})^{\log_{\sqrt{X}}2-\log_{X^{2}}9}$ và bấm =

 Dạng 3: Tính $\log_{e}f$ theo A,B với $\log_{a}b=A, \log_{c}d =B$.

Phương pháp: Máy tính để chế độ tính toán bình thường MODE 1.

Bước 1: Gán giá trị $\log_{a}b $ cho A. 

Bước 2: Gán giá trị $\log_{c} d$ cho B.

Bước 3: Gán giá trị $\log_{e}f $ cho C.

Bước 4: Thử đáp án.

Ví dụ 4: Cho $a=\log_{12}16, b=\log_{12}7$. Tính $\log_{2}7$ theo a, b.

A. $\frac{a}{1-b}$.

B. $\frac{a}{b-1}$.

C. $\frac{a}{b+1}$.

D. $\frac{b}{1-a}$.

Giải: Đáp án D

Gán giá trị $\log_{12}6$ cho biến A, $\log_{12}7 $ cho biến B, $\log_{2}7 $ cho biến C.

Thử đáp án.

Đáp án A: Nhập vào màn hình $C-\frac{A}{1-B}$ rồi ấn =

Tương tự như vậy với đáp án B, C.

 Dạng 4: Tính giá trị biểu thức

Ví dụ 5: Cho $\log_{a} b=\sqrt{3}$. Khi đó giá trị biểu thức $\log_{\frac{\sqrt{b}}{a}}\sqrt{\frac{b}{a}}$

A. $\sqrt{3}-1$.

B. $\sqrt{3}+1$.

C. $\frac{\sqrt{3}-1}{\sqrt{3}+2}$.

D. $\frac{\sqrt{3}-1}{\sqrt{3}-2}$.

Giải: Đáp án D

Cách 1: Theo tự luận.

Ta có $\log_{a}b=\sqrt{3} \Leftrightarrow b=a^{\sqrt{3}}$.

Thay $b=a^{\sqrt{3}}$ vào $\log_{\frac{\sqrt{b}}{a}}\sqrt{\frac{b}{a}}$ ta có

$\log_{\frac{\sqrt{a^{\sqrt{3}}}}{a}}\frac{\sqrt{a^{\sqrt{3}}}}{\sqrt{a}}=\log_{\frac{a^{\sqrt{3}}}{a^{2}}}\frac{a^{\sqrt{3}}}{a}=\log_{a^{\sqrt{3}-2}}a^{\sqrt{3}-1}=\frac{\sqrt{3}-1}{\sqrt{3}-2}$.

Cách 2: Sử dụng máy tính

Ta có $\log_{a}b=\sqrt{3} \Leftrightarrow b=a^{\sqrt{3}}$. chọn $a=2, b=2^{\sqrt{3}}.$

Nhập vào màn hình $log_{\frac{\sqrt{Y}}{X}}\sqrt{\frac{Y}{X}}$ và gán cho A.

Kiểm tra các đáp án.

Tổng số điểm của bài viết là: 0 trong 0 đánh giá

Click để đánh giá bài viết

  Ý kiến bạn đọc

Những tin mới hơn

Những tin cũ hơn

Giới thiệu

Trang chia sẽ kiến thức là một nơi mà mọi người có thể tìm kiếm và chia sẽ kiến thức về mọi lĩnh vực. Từ khoa học đến nghệ thuật, từ kinh tế đến xã hội, trang chia sẽ kiến thức là một nguồn tài nguyên quý giá cho mọi người. Trong xã hội ngày nay, việc học hỏi và chia sẽ kiến thức là rất quan trọng....

Thăm dò ý kiến

Bạn có sẵn sàng mua module có nội dung hay từ trang web hay không

>
Bạn đã không sử dụng Site, Bấm vào đây để duy trì trạng thái đăng nhập. Thời gian chờ: 60 giây
Gửi phản hồi